Molecular genetic analysis of an SNF2/brahma-related gene in Tetrahymena thermophila suggests roles in growth and nuclear development.
نویسندگان
چکیده
We used a reverse genetic approach to identify three members of the SNF2 superfamily of chromatin remodeling genes in the ciliated protozoan Tetrahymena thermophila in order to investigate possible functions of ATP-dependent chromatin remodeling factors in growth and nuclear development. Comparative sequence analysis of the gene product of the Tetrahymena brahma-related gene (TtBRG1) indicates it is a member of the SNF2/BRM subgroup of the SNF2 superfamily. Northern analysis suggests that TtBRG1 has roles in growth and nuclear development in Tetrahymena. Indirect immunofluorescence analysis during nuclear development indicates that TtBrg1p localizes to both the parental and developing macronucleus of Tetrahymena during the time period corresponding to genome rearrangements. We generated germ line knockout heterokaryons for TtBRG1 and demonstrated that expression of the gene is required to complete nuclear development of Tetrahymena. In addition, the formation of distinct Pdd1p-containing structures is disturbed during the late stages of conjugation in TtBRG1 germ line knockout heterokaryons. We discuss these results in light of possible roles of SNF2-related proteins in growth and nuclear development of Tetrahymena.
منابع مشابه
RAD51 is required for propagation of the germinal nucleus in Tetrahymena thermophila.
RAD51, the eukaryote homolog of the Escherichia coli recA recombinase, participates in homologous recombination during mitosis, meiosis, and in the repair of double-stranded DNA breaks. The Tetrahymena thermophila RAD51 gene was recently cloned, and the in vitro activities and induction of Rad51p following DNA damage were shown to be similar to that of RAD51 from other species. This study descr...
متن کاملSUMOylation is developmentally regulated and required for cell pairing during conjugation in Tetrahymena thermophila.
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual rep...
متن کاملExperimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila
The ciliate Tetrahymena thermophila is an important eukaryotic model organism that has been used in pioneering studies of general phenomena, such as ribozymes, telomeres, chromatin structure and genome reorganization. Recent work has shown that Tetrahymena has many classes of small RNA molecules expressed during vegetative growth or sexual reorganization. In order to get an overview of medium-s...
متن کاملMolecular analysis of N6-methyladenine patterns in Tetrahymena thermophila nuclear DNA.
We have cloned two DNA fragments containing 5'-GATC-3' sites at which the adenine is methylated in the macronucleus of the ciliate Tetrahymena thermophila. Using these cloned fragments as molecular probes, we analyzed the maintenance of methylation patterns at two partially and two uniformly methylated sites. Our results suggest that a semiconservative copying model for maintenance of methylati...
متن کاملAn aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila
In Tetrahymena thermophila, peptides secreted via dense-core granules, called mucocysts, are generated by proprotein processing. We used expression profiling to identify candidate processing enzymes, which localized as cyan fluorescent protein fusions to mucocysts. Of note, the aspartyl cathepsin Cth3p plays a key role in mucocyst-based secretion, since knockdown of this gene blocked proteolyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 5 8 شماره
صفحات -
تاریخ انتشار 2006